Statistics and Estimators

Concepts

1. A statistic is a function of random variables and we use them to estimate values that we aren't always given. The estimator of the mean is

$$
\hat{\mu}=\frac{x_{1}+\cdots+x_{n}}{n} .
$$

The biased estimator of the standard deviation is

$$
s_{*}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2} .
$$

The unbiased estimator of the standard deviation, also known as the sample standard deviation is

$$
s^{2}=\frac{n}{n-1} s_{*}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}
$$

The $\mathbf{9 5 \%}$ confidence interval of the population mean is

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right) .
$$

The PDF of a normal distribution with mean μ and standard deviation σ is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} .
$$

Example

2. The number of rainy days in Honolulu in a year is Poisson distributed. Suppose that last ten years have had $4,3,2,6,5,4,1,3,4,3$ rainy days. What is the 95% confidence interval for λ ?

Solution: First we calculate $\hat{\mu}=\bar{x}=\frac{4+3+2+6+5+4+1+3+4+3}{10}=3.5$. Then for a Poisson distribution, we have $\hat{\lambda}=\hat{\mu}=3.5$. We also have $\hat{\sigma}=\sqrt{\hat{\lambda}}=\sqrt{3.5}$. So the 95% confidence interval is

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=\left(3.5-\frac{2 \sqrt{3.5}}{\sqrt{10}}, 3.5+\frac{2 \sqrt{3.5}}{\sqrt{10}}\right) .
$$

3. Now suppose that we did not know that the number of rainy days was Poisson distributed. What is the 95% confidence interval for the average number of rainy days per year?

Solution: If we don't know that the distribution is Poisson, then we need another estimate for the standard deviation. We use the formula

$$
s^{2}=\frac{1}{10-1}\left[(4-3.5)^{2}+(3-3.5)^{2}+\cdots+(4-3.5)^{2}+(3-3.5)^{2}\right]=\frac{18.5}{9}=\frac{37}{18} .
$$

So now $\hat{\sigma}=s=\sqrt{37 / 18}$. So our 95% confidence interval is

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=\left(3.5-\frac{2 \sqrt{37 / 18}}{\sqrt{10}}, 3.5+\frac{2 \sqrt{37 / 18}}{\sqrt{10}}\right)
$$

Problems

4. TRUE False If $f(x)=\frac{1}{a} e^{-(x-2019)^{2} / b}$ is the PDF of a normal distribution. Then $\pi=\frac{a^{2}}{b}$.

Solution: Under our formula, we have $a=\sigma \sqrt{2 \pi}$ and $b=2 \sigma^{2}$ so $\frac{a^{2}}{b}=\frac{\sigma^{2} \cdot 2 \pi}{2 \sigma^{2}}=\pi$.
5. TRUE False If we know both the biased estimator s_{*} and the unbiased estimator s, we can find out the sample size n.

Solution: We have $s_{*}^{2} / s^{2}=\frac{n-1}{n}=1-\frac{1}{n}$ so we can solve for n.
6. TRUE False For a geometric distribution, our estimate for the probability p is $\hat{p}=$ $\frac{1}{\bar{x}+1}$.

Solution: We have $\bar{x}=\hat{\mu}=\frac{1-\hat{p}}{\hat{p}}=\frac{1}{\hat{p}}-1$ so solving gives $\hat{p}=\frac{1}{\bar{x}+1}$.
7. True FALSE The smaller the 95% confidence interval is, the lower our confidence is that the true parameter is in that interval.

Solution: We are always just 95% confident that the true parameter is in the interval.
8. True FALSE The smaller the 95% confidence interval is, the higher our confidence is that the true parameter is in that interval.

Solution: We are always just 95% confident that the true parameter is in the interval.
9. True FALSE The 95% confidence interval means that there is 95% chance that the parameter is in the interval.

Solution: The parameter is a fixed number so it is either in the interval or not in it.
10. True FALSE Chebyshev's inequality says that 95% of the sample data much lie within 2 standard deviations of the mean.

Solution: Chebyshev's only gives a bound of $1-\frac{1}{2^{2}}=75 \%$.
11. I flip a biased coin 100 times and get 64 heads. What is the 95% confidence interval for p ?

Solution: This is a sum of Bernoulli trials. Our best estimate for $\hat{p}=\hat{\mu}=\frac{64}{100}=$ $\frac{16}{25}$. So then our standard deviation is $\sqrt{\hat{p}(1-\hat{p})}=\sqrt{\frac{16}{25} \frac{9}{25}}=\frac{12}{25}$. Then our 95% confidence interval for $\hat{p}=\hat{\mu}$ is
$\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=\left(0.64-\frac{2(12 / 25)}{\sqrt{100}}, 0.64+\frac{2(12 / 25)}{\sqrt{100}}\right)=\left(0.64-\frac{12}{125}, 0.64+\frac{12}{125}\right)$.
12. For the upcoming ASUC elections, you ask 400 people if they support the basic needs referendum, and 256 of them do. What is the 95% confidence interval for the percentage of all students who support the referendum?

Solution: This is again a sum of Bernoulli trials. Our best estimate for $\hat{p}=\hat{\mu}=$ $\frac{256}{400}=\frac{16}{25}$. So then our standard deviation is $\sqrt{\hat{p}(1-\hat{p})}=\sqrt{\frac{16}{25} \frac{9}{25}}=\frac{12}{25}$. Then our 95% confidence interval for $\hat{p}=\hat{\mu}$ is
$\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=\left(0.64-\frac{2(12 / 25)}{\sqrt{400}}, 0.64+\frac{2(12 / 25)}{\sqrt{400}}\right)=\left(0.64-\frac{6}{125}, 0.64+\frac{6}{125}\right)$.
13. Suppose I keep asking students if they are voting in the ASUC elections until I find someone who is. I do this multiple times and suppose that the number of students I have to ask before finding someone who is voting is $2,2,1,8,3,5,6,3,3,7$. What is the 95% confidence interval for the average number of times we need to ask before we ask someone who is voting?

Solution: This is a geometric distribution. We have $\hat{\mu}=\bar{x}=\frac{2+2+1+8+3+5+6+3+3+7}{10}=$ 4. Then because this is a geometric distribution and we include the person who is voting, the success, we have $\hat{\mu}=\frac{1-\hat{p}}{\hat{p}}$ so $\hat{p}=\frac{1}{5}$. The standard deviation is $\hat{\sigma}^{2}=\frac{1-\hat{p}}{\hat{p}^{2}}=20$. Then, the 95% confidence interval for $\hat{\mu}=\frac{1-\hat{p}}{\hat{p}}$ is

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=\left(4-\frac{2 \sqrt{20}}{\sqrt{10}}, 4+\frac{2 \sqrt{20}}{\sqrt{10}}\right)=(4-2 \sqrt{2}, 4+2 \sqrt{2}) .
$$

14. Do the previous problem if we use the sample standard deviation to calculate our confidence interval.

Solution: Now we set $\hat{\sigma}=s$ where

$$
s^{2}=\frac{1}{10-1}\left[(2-4)^{2}+(2-4)^{2}+\cdots+(3-4)^{2}+(7-4)^{2}\right]=\frac{50}{9} .
$$

So the 95% confidence interval is

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=\left(4-\frac{2 \sqrt{50 / 9}}{\sqrt{10}}, 5+\frac{2 \sqrt{50 / 9}}{\sqrt{10}}\right) .
$$

15. Every morning for 10 days I try to do the water bottle flip 25 times. I am successful $7,8,3,4,8,5,4,5,2,4$ times. What is the 95% confidence interval for the number of times I am successful tomorrow morning?

Solution: This is multiple binomial distributions with $n=25$. We want to find the 95% confidence interval $\hat{\mu}=n \hat{p}=25 \hat{p}$ and $\hat{\mu}=\bar{x}=\frac{7+8+3+4+8+5+4+5+2+4}{10}=5$. So $\hat{p}=\frac{5}{25}=\frac{1}{5}$ and the standard deviation is $\hat{\sigma}=\sqrt{n \hat{p}(1-\hat{p})}=\sqrt{25(1 / 5)(4 / 5)}=2$. So the 95% confidence interval is

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=\left(5-\frac{2 \cdot 2}{\sqrt{10}}, 5+\frac{2 \cdot 2}{\sqrt{10}}\right) .
$$

16. A Pareto distribution is given by the $\operatorname{PDF} f(x)=\frac{p}{x^{p+1}}$ for $x \geq 1$ and 0 for $x<1$ for some parameter p. Suppose I draw from this distribution 4 times and get the values $1,2,1,1,1$. What is the 95% confidence interval for μ ?

Solution: The mean of the Pareto distribution is $\frac{p}{p-1}$. The standard deviation is $\sqrt{\frac{p}{(p-1)^{2}(p-2)}}$. So again we calculate $\hat{\mu}=\frac{\hat{\hat{p}}}{\hat{p}-1}=\frac{1+2+1+1+1}{5}=\frac{6}{5}$ so we see $\hat{p}=6$. Then $\hat{\sigma}=\sqrt{\frac{6}{5^{2} \cdot 4}}=\frac{\sqrt{6}}{10}$. So the 95% confidence interval for μ is

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=\left(\frac{6}{5}-\frac{2 \cdot \sqrt{6} / 10}{\sqrt{5}}, \frac{6}{5}+\frac{2 \cdot \sqrt{6} / 10}{\sqrt{5}}\right) .
$$

17. An exponential distribution is given by the $\operatorname{PDF} f(x)=c e^{-c x}$ for $x \geq 0$ and 0 for $x<0$. I draw from this distribution 5 times and get the values $\frac{1}{6}, 0, \frac{1}{3}, 1, \frac{1}{6}$. What is the 95% confidence interval for μ ?

Solution: For this distribution, we need to first calculate the mean and standard deviation and how they depend on c by taking integrals. If we do this, we get $\mu=\frac{1}{c}$ and $\sigma=\frac{1}{c}$. So in this case, we have $\hat{\mu}=\frac{1}{\hat{c}}=\bar{x}=\frac{1 / 6+0+1 / 3+1+1 / 6}{5}=\frac{1}{3}$ so $\hat{c}=3$. So $\hat{\sigma}=\frac{1}{\hat{c}}=\frac{1}{3}$. Now the 95% confidence interval for μ is

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=\left(\frac{1}{3}-\frac{2 \cdot 1 / 3}{\sqrt{5}}, \frac{1}{3}+\frac{2 \cdot 1 / 3}{\sqrt{5}}\right) .
$$

